
Expanding Selection for Information Visualization Systems
on Tablet Devices

Ramik Sadana
Georgia Institute of Technology

ramik@gatech.edu

John Stasko
Georgia Institute of Technology

stasko@cc.gatech.edu

ABSTRACT
Selection is a fundamental operation in interactive visualiza-
tion applications. Although techniques such as clicking and
lassoing items of interest are sufficient for basic selections,
a more sophisticated interaction mechanism is required for
expressing complex queries to modify or generalize existing
selections. The ability to perform these advanced selections
is critical for effective analysis within visualization systems.
On touch-based devices such as tablets, however, expressing
advanced selections is difficult due to the absence of a cursor
and modifier keys. In this work, we address this limitation by
presenting new interaction techniques that leverage a person’s
non-dominant hand. We use these techniques for advanced
selection operations such as expanding, modifying, and repli-
cating existing selections. Further, we introduce a method for
performing generalized selection on tablet devices that pro-
vides a fluid mechanism to control the attributes and parame-
ters of selection.

Author Keywords
Information visualization, selection, multi-touch, tablets

ACM Classification Keywords
H.5.m. Info Interfaces and Presentation (e.g. HCI): Misc.

INTRODUCTION
Selection is a fundamental operation in interactive visual-
ization applications [36]. It can be used for finding de-
tails about an item or as an initial step for subsequent op-
erations such as filtering, brushing, and deletion. While
basic techniques for selection such as clicking/tapping and
lassoing are robust and employed across domains, perform-
ing an advanced selection (e.g., adding to an existing selec-
tion) often requires expressing more complex and nuanced
queries. This complexity is a direct consequence of the
modes associated with the selection operation, including add-
to-selection, remove-from-selection, intersect-with-selection,
replace-selection, and toggle-selection [32].

In commercial operating systems, modifier keys (Cmd, Ctrl
and Shift) are used to augment the basic selection by enabling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ISS’16, November 06 - 09, 2016, Niagara Falls, ON, Canada
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4248-3/16/11$15.00
DOI: http://dx.doi.org/10.1145/2992154.2992157

two additional modes — add-to-selection and remove-from-
selection. For example, a control click on a file icon in MS
Windows adds that file to the existing selection set. Graph-
ics applications such as Photoshop extend support for all five
modes, with each using an explicit button for activation. Ad-
vanced selection behavior is also evident within desktop visu-
alization systems. Applications such as Tableau and Spotfire
support three selection modes – replace, add, and remove.

While advanced selection behavior is common across
desktop-based visualization systems, the same is not true
for visualization applications on touch devices. In fact, cur-
rently there are inconsistencies in the way basic selection it-
self is supported in applications. For example, Kinetica [26]
supports a limited form of selection, employing it only for
grouping tasks. Vizable [2] supports selection for details-
on-demand on linecharts, but does not provide selection on
barcharts. Sadana and Stasko employ selection more exten-
sively in their system [27], using it for brushing, filtering, and
details-on-demand. However, their system only supports the
basic (replace) selection mode.

Since advanced selection is important for visualization ap-
plications, there is a clear need to explore and understand
it in more detail. However, several challenges must be
addressed to bring advanced selection to visualizations on
touch-devices. First, it is not immediately clear which modes
should be supported. Further, identifying touch gestures to
use for these operations is also challenging. The predominant
trend in touch-based visualization systems has been to adopt
a standard vocabulary of gestures, i.e., a combination of tap,
pan, pinch, and rotate [4, 26, 27]. Since these interactions are
typically already employed for other critical operations, iden-
tifying alternate interactions becomes even more difficult.

In this design-focused research, we introduce a new approach
for providing powerful selection capabilities in touch-based
visualization systems. First, by leveraging a person’s non-
dominant hand, we extend the standard vocabulary of ges-
tures available within these systems. Next, we use the new
interactions to support advanced selection operations such
as expanding, modifying, and duplicating existing selections.
Finally, we present a novel interaction technique to perform a
special type of advanced selection — generalized selection.

BACKGROUND

Advanced Selection on Multitouch Devices
On touch-devices with finger-based input, a person typically
selects items by tapping on the intended targets or by lasso-
ing around them. Usually, this is less precise than on desk-

top computers because of people’s inaccuracy in touching the
screen with their finger(s) [19] and the occlusion that results
from it [24]. These issues of imprecision have been well doc-
umented in the past, and researchers have presented several
techniques to mitigate them. Previous work includes take-
off [24] that placed the cursor at a fixed offset from the touch
location, and zoom-pointing [5] and sliding-widgets [22] that
both enhanced the touch areas to allow precise selection of
the target.

Enhanced selection techniques have also been proposed for
improving selection of an item from a dense cluster of items,
a task that is central to visualizations. In LinearDragger [3],
users begin by initiating a drag gesture at the position of the
target object. This reveals a zoomed-in view of the area, with
the object nearest to touch location selected. As the user drags
the finger away, the system sequentially scrubs through all the
neighboring objects. Lifting the finger commits the selection.

The other way of countering imprecision is by modifying er-
roneous selections. Several advanced selection techniques for
modifying selections on touch-screens have been proposed.
For example, Wu et al. [35] described a Pile-n-Browse gesture
for selecting objects by scooping them between both hands.
Wilson et al. [33] presented an approach to select multiple
objects by placing multiple fingers on them. We considered
these techniques for our work, but due to their focus on large
surfaces and the use of bimanual interactions, their applica-
bility to tablet-based visualizations is limited.

Benko et al. [6] highlighted the value in making selection sim-
ple, since the ability to directly touch an object to select it
is a very appealing aspect of touch screens. This was fur-
ther confirmed by the guessability study conducted by Wob-
brock et al. [34] where participants preferred the use of tap
and lasso gestures for both single and group selection tasks.
However, so far the adoption of advanced selection on tablet
devices has been limited. In the space of commercial appli-
cations for tablets, only those in the graphics domain, such as
Photoshop and Paper, provide support for advanced selection
modes such as add-to-selection and remove-from-selection.

Advanced Selection in Information Visualization
Selection is a cornerstone of interaction within visualization
systems [32, 36]. The key role of selection is in assigning
reference: indicating data item(s) of interest that can subse-
quently be operated upon. If there are multiple coordinated
views, selected items can also be highlighted and brushed
across views [10]. Alternatively, selecting an item can reveal
specific details about the item in a details-on-demand view.

Advanced selection is also critical to visualizations and ad-
vanced operations are common across desktop visualization
systems, such as Tableau and Spotfire. Typically, these sys-
tems extend the behavior that the operating system provides
and support modes such as add-to-selection and remove-
from-selection. These modes are often operated with mod-
ifier keys (Ctrl, Alt, Shift) or mode-switches. However, as
ubiquitous as these selections are on desktop visualization
systems, they are noticeably absent across touch-based vi-

sualization systems such as Kinetica [26], Vizable [2], and
TouchWave [4].

North et al. [23] earlier explored selection operations on large
touchscreen displays. Through a user study, they compared
the use of one and two-handed postures for group selection
tasks within a glyph-based visualization technique. More re-
cently, Willett et al. [31] gathered user-elicited gestures for
selection in interactive graphics on large vertical displays.
Their results indicated a preference for one-finger and one-
handed interactions over two-handed interactions. However,
the tasks they employed were referential in nature (‘Select all
the peaks’ or ‘Select three lowest data points’), and differed
from the advanced selection operations that are the focus of
our work, such as modify or duplicate selection.

ADVANCED SELECTION FOR TABLET VISUALIZATIONS
In this work, we focus on tablets: portable, handheld devices
with a touchscreen display ranging from 7 to 13-inches. Sev-
eral research and commercial data visualization applications
have been developed for such devices recently [2, 4, 26, 27].
Our goal was to design support for advanced selection opera-
tions within these applications. Our design process involved
two main steps. First, we identified the selection modes that
are applicable to tablet-based visualization systems. Second,
we identified appropriate touch interactions for enabling and
operating these modes.

Modes for Advanced Selection
Because selection modes are not mutually exclusive and a
combination of a few modes can be sufficiently powerful and
expressive [32], not all modes need to necessarily be sup-
ported in a system. Identifying relevant selection modes is
crucial, however. One option is to replicate the functional-
ity provided within comparable systems on desktops, such as
Tableau and Spotfire. This would help address the typical use
case for advanced selection in visualizations, wherein users
want to perform a selection task, but are unable to express the
query using the standard selection operations. However, on
touch-devices, another unique set of use-cases also emerge as
a consequence of the input being (imprecise) finger-based in-
stead of cursor-based. Below, we describe these diverse use-
cases for advanced selection on touch-based tablets. For each
case, we identify the selection mode(s) that best represents
the use-case.

View-driven Selections
V1. Compound filter - A filter query may be expressed over
multiple attributes (e.g., for movies: 1998 < Year < 2008
AND Genre = Comedy OR Drama). This filter operation can
be executed by clicking on or lassoing around data items in
the view that match the filter criteria, and activating “keep
only” or “exclude” options. However, advanced selection
techniques are needed here since target items may be placed
at distant locations, on different axes, or in entirely differ-
ent views. Relevant selection modes: add-to-selection and
intersect-with-selection.
V2. Brushing & Linking - Selecting items in one view to
track them in a different view is a key operation in visual-
ization applications. Often this operation is one of creating

a selection window and subsequently modifying it to observe
the effect in other views. Modifications that are useful are re-
sizing (or adding and removing items), translation, and dupli-
cation of selection windows. Relevant selection modes: add-
to-selection, remove-from-selection, and duplicate-selection.

Challenges of Touch Input
T1. Imprecision of touch - Touch input is inherently im-
precise as the finger is many times larger than a target pixel
on the display [19]. This imprecision affects selections made
with drag or lasso operations, such as range selections made
by dragging a finger on an axis [27]. Imprecision causes the
fingers to overshoot or undershoot the intended boundaries
of selection. Thus, the user may want to resize the selec-
tion window. Relevant selection modes: add-to-selection and
remove-from-selection.
T2. Occlusion by hand - The hand manipulating the display
often covers the majority of the visualization. This issue is
particularly notable on multi-view configurations where se-
lections are dependent on observing data items across views
(or brushing). Thus, frequent hand lift-offs are required,
which subsequently imply features for readjusting the selec-
tion window. Relevant selection modes: add-to-selection and
remove-from-selection.

The above use cases highlight the need for four selection
modes—add-to-selection, remove-from-selection, duplicate-
selection, and intersect-with-selection. In the following sec-
tion, we design interaction techniques to operate these modes.

Interaction Techniques for Advanced Selection
The advanced selection interactions typically consist of the
user enabling a mode and then performing a selection, or per-
forming a selection first and then picking a mode. In both
implementations, communicating the mode to the system is
required. On touchscreens, this can be done in a number
of ways. The three main approaches are multitouch menus,
touch overloading, and quasimodes.

Multitouch Menus
As the number of gestures employed in a system increases,
the cognitive overhead of remembering the gestures also in-
creases. Using menus can help reduce this overhead by en-
couraging recognition over recall. A common example on
touch-devices are the marking menus. These menus can be
activated with a gesture and typically appear around the touch
point. The options in the menu can be accessed either by tap-
ping, using a stroke [21], or through a chorded action of the
fingers [20].

The use of menus for advanced selection is common in desk-
top applications such as Photoshop and Sketch. Similar be-
haviors can easily be replicated in tablets – a menu can ei-
ther be persistent or can appear automatically once selection
is made. However, the drawback of the first approach is that
persistent menus take up valuable space on the screen. The
second case, on-demand marking-menus, may occlude sec-
tions of the view that contain information needed to select a
mode. Further, introducing marking-menus within a system
that does not already use them has the potential to impose

unneeded complexity. If the behavior is unique, the discover-
ability of the menu, at least initially, is low. Conversely, once
users gain experience with the menu, they are likely to expect
menus for other operations as well.

Touch Overloading
A second approach involves touch overloading: differentiat-
ing between touch events, based on their properties, to enable
distinct actions. Commonly used properties include location
on the screen, input type (finger vs. stylus), duration, and di-
rection of movement. More recently, other properties have
also been shown to be effective for differentiating touches,
such as velocity, shear [14], and pressure [17].

Any of these properties can be adapted to create interac-
tions for advanced selection operations. For example, tapping
the screen with pressure could activate the add-to-selection
mode. However, the disadvantage of touch overloading is
similar to that of marking-menus. Novel interactions that are
considerably different from ones already used in the system
require significant effort from the user to learn and remember.
Further, since the touch properties themselves do not have any
direct relationship with advanced selection (akin to, say, pres-
sure and thickness), the learning effort is further amplified.

Quasimodes
Modes are states that a system enters wherein all user actions
pertain to a specific category of tasks. While the use of modes
is common in desktop computers, they are also popular on
mobile devices. A common example is lists—tap and drag
gestures in a list map to selection and scrolling, but by en-
abling the edit mode, the same gestures map to operations
such as removing and reordering of items.

Modes can operate in one of two manners—persistent and
transient. Persistent modes, also known as “latching”
modes [13], stay in effect until cancelled or changed. For
instance, the edit list operation is an example of a latching
mode. Research has revealed that these modes tend to lead to
more errors [28] since users often forget their state and strug-
gle to identify how to cancel the mode if they realize they
have made an error.

Transient modes, or “quasimodes” [25], stay in effect only
as long as the user maintains the action required to activate
the mode. These modes provide an easy and reliable way to
return to the default application state and have been shown
to significantly reduce mode errors compared to persistent
modes [28]. On desktops, most examples of quasimodes
make use of modifier keys, such as Shift, Command, Ctrl,
and Alt. A similar idea can be adopted for tablets, but a re-
placement for those modifier keys must be found.

ADVANCED SELECTION INTERACTION DESIGN
Based upon the considerations discussed above, we used
quasimodes to provide advanced selection on tablets. In the
absence of keyboards with shift and control keys, a differ-
ent modifier was needed to trigger the mode. To address this
need, we leveraged the use of a person’s non-dominant hand.
The complementary roles of dominant and non-dominant
hands have been studied extensively [12]. In HCI research,

two-handed interactions have been employed for drawing and
selection tasks, and for techniques such as ToolGlasses [7].

Most of these applications, though, assume stable configura-
tions of use, where both hands are free to provide input to the
system. On tablet devices, however, the non-dominant hand
is often restricted to holding the tablet. As a result, the range
of movement available to the non-dominant hand is severely
constrained. Based on the way the tablet is held, people can
only perform basic tap, hold, and drag gestures at the edges
of the screen using either the thumb or the fingers.

Wagner et al. [29] initially explored this idea for handheld
tablet devices. By observing how people typically held
tablets, they introduced three categories of bimanual inter-
actions — bimanual taps, bimanual chords, and bimanual
gestures. Each of these assigned specific operations to the
non-dominant hand, e.g., in the case of chords and gestures,
finger(s) manipulated specific widgets on the screen, such as
menus and lists. While these interactions are certainly more
complex than we require, the bimanual tap configuration is
more relevant for our use. The authors employ these gestures,
which consist of tapping or holding on the edge of the screen,
for actions such as activating a marking menu or displaying
the keypad mode on the soft keyboard.

We build on these results, but simplify the interaction to
match the role of a modifier. Modifiers only act as precur-
sors to the primary action. Thus, we only require a single
bit of information—whether the modifier was performed or
not. Since a basic hold gesture provides this information, we
employ it as a modifier.

The Clutch Modifier Technique
We define Clutch1 as the action of the non-dominant hand
performing a hold (or long-press) gesture on the screen. We
utilize this Clutch action as a modifier in the system. The be-
havior of our implementation differs from modifiers on desk-
tops. There, a modifier typically does not align to a unique
category of tasks. For example, the tasks performed with a
Shift key cannot be classified together into a single category.
We employ Clutch to introduce interactions that all map to
the same category of tasks—advanced selection.

To introduce Clutch on tablets, we had to define the locations
on the screen where the action would be permissible. This
choice of locations depends on the way people hold tablets.
Wagner et al. [29] conducted an initial study to observe peo-
ple’s grips when holding a tablet and found five configu-
rations: ThumbBottom, ThumbCorner, ThumbSide, Finger-
sTop, and FingersSide. In their observation of 8 participants,
they identified FingersSide as the most preferred option.

While their results are applicable to our work, they are no-
tably different from our informal observations of people us-
ing tablets under both regular and controlled conditions to-
day. The predominant posture we observe is a combination of
ThumbSide and ThumbCorner. These observations are also
consistent with the patterns that are found in the results from

1We use the term “Clutch” much like a car clutch, different from
that as used in a thread of existing touch interaction research [9].

a Google Image Search for terms tablet, grip, ipad, and hold-
ing. The difference in observations can partly be explained
by the significant drop in the weight of tablets since the orig-
inal study was conducted in 2012. For instance, the weight
of an Apple iPad, the dominant tablet in the market, has de-
clined by over 30% since 2012. The weight of a device has
a strong bearing on how people hold it, as acknowledged by
the authors of the original study.

Ultimately, our design choice was to relax the location re-
quirement and support Clutch on all four edges of the screen.
We provide a 100 pixels wide zone that runs along the edges.
Since Clutch is a single discrete action, the effort required to
operate it is small. Enabling it on all edges further reduces
this effort. Moreover, it better supports the division of labor
model since Clutch is not restricted to any single hand. De-
pending on where the primary action needs to be performed,
either hand can be used to activate Clutch. When a Clutch is
detected, a bright blue halo image appears beneath the clutch-
ing finger to provide visual feedback to the user.

To demonstrate the utility of Clutch gestures for advanced se-
lection, we add them to a system providing multi-coordinated
visualizations on tablets [27]. The system supports several
methods for selecting glyphs in charts such as scatterplots
and bar graphs. Individual glyphs can be selected by tapping
on them, while multiple glyphs can be selected by lassoing
around them. Swiping on the axes selects glyphs between a
range of values. Finally, via brushing, glyphs selected in one
chart are also highlighted in the other chart.

Mapping Clutch to Selection Modes
Using Clutch as a modifier, we are able to augment and reuse
all the primary gestures, such as tap, drag, and pinch. In
mapping these modified gestures to advanced selection tasks,
we sought a correspondence between the roles of the original
gesture A and the modified gesture Clutch + A. We achieved
this in the following manner: gestures that create a new selec-
tion in the original state do the same in the modified state, but
with a different selection mode enabled. Similarly, gestures
that modify an existing selection in the original state modify
a copy of the selection in the new state. Enabling the Clutch
behavior that is consistent with the behavior of modifiers on
desktops should help promote learnability of the gestures. In
the following section, we describe the role of each modified
gesture in detail. The accompanying video illustrates the dy-
namics of each operation as well.

Clutch + Tap
The Clutch + tap gesture is performed by activating Clutch
and tapping with a finger anywhere on the screen (Figure 1).
This gesture augments the standard tap behavior that se-
lects the glyph placed beneath the finger. Whereas the non-
clutched tap deselects previously selected glyphs, Clutch +
tap simply adds the new glyph to the existing selection. If the
tapped glyph is already selected, Clutch + tap deselects the
glyph and removes it from existing selection.

Clutch + Drag
Similar to Clutch + tap, Clutch + drag is performed by acti-
vating a Clutch and dragging a finger on the screen. We use

Figure 1: Clutch + tap gesture to select multiple glyphs.

this gesture to enable different selection modes depending on
the type of selection currently active in the system.

1. Single glyph selected – A single glyph is selected by either
tapping on it or lassoing around it. Since identifying a glyph
in a dense region is fairly imprecise [19], we use Clutch +
drag gesture to assist in selecting a target glyph.

The technique works in the following manner. When a Clutch
+ drag is initiated with one glyph selected, the system projects
the drag movement further in that direction to identify the
glyph placed closest to the selected glyph. Once identified,
the system holds for the user to move the finger by the same
amount as the distance between the two glyphs. For target
glyphs placed further away, we use a control-display gain to
expand the magnitude of movement. When the movement
exceeds the distance between the glyphs, the selection snaps
to the other glyph, deselecting the original glyph (Figure 2).
This also reveals a label depicting the primary key of the se-
lected glyph for additional feedback. The overall effect of
the operation resembles that of using a trackpad where fin-
ger’s movement maps to the movement of a cursor. Similar
to BubbleCursor [11], the selection is snapped to a glyph at
all times, i.e. there is no transitional state in the middle when
no glyph is selected.

Our design is also similar to the LinearDragger technique for
selecting an item from a dense cluster of items [3], with three
key differences. First, the user does not need to place their
finger near the dense area of points and can perform the action
from a distance. Second, instead of mapping the selection to
one-dimensional movement, we use both dimensions of the
movement to allow more precise access to the neighboring
glyphs. Finally, we provide details for each glyph, helping
users differentiate them from one another.

2. Multiple glyphs selected – Dragging on the view draws
a lasso path and selects all points that lie within the path.
Using a Clutch augments this behavior by enabling the add-
to-selection mode. Thus, new glyphs are selected without
deselecting previously selected glyphs. This is similar to
Clutch + tap. However, Clutch + lasso does not support
remove-from-selection. If the lasso region contains glyphs
that are already selected, their selection state is not toggled.

Figure 2: When a single glyph is selected, Clutch + drag
translates the selection to a neighboring glyph that is located
in the direction of the drag.

3. Rectangular selection – If a view contains an active selec-
tion rectangle on any axis, the Clutch + drag gesture responds
based on the position where the drag is initiated.

A. Clutch + drag on the axis: Clutch + drag in this case cre-
ates a new rectangular selection without dismissing exist-
ing selections (Figure 3). However, the selection mode em-
ployed depends on whether the existing selections and the
new selection are on the same axis or on different axes. In
case of the former, the add-to-selection mode is activated
and all glyphs that lie within any of the selection rectan-
gles are selected. For the latter, we considered both union
and intersection as potential options. We debated providing
both as a toggle option, but ultimately concluded that the
need for union of selections on independent axes was fairly
small. Thus, we solely use an intersection operation on se-
lections belonging to different axes. We use color variation
to differentiate the selected region from the unselected re-
gion (Figure 3).

B. Clutch + drag inside selection: Dragging inside a se-
lection without Clutch moves the selection along the axis.
Dragging with Clutch results in a similar effect, but instead
of moving the original rectangle, it moves a copy of the se-
lection, by activating the duplicate-selection mode (Figure
4). The glyphs that lie within either of the rectangles are
selected, i.e. we use union of the rectangles for selection.

Clutch + Pinch
The Clutch + pinch gesture is performed by activating a
Clutch and executing a two-finger pinch gesture on the view.
We utilize this gesture for modifying existing selections by
increasing and decreasing the size of the selection area.

1. Clutch + pinch for multiple selected glyphs – If the view
contains multiple selected glyphs, the Clutch + pinch gesture
can be used for scaling the size of this selection (Figure 5).
When the gesture is initiated, the system creates a convex hull
that encloses all the selected glyphs. The pinch gesture then
controls the size of the hull. We utilize a flexible aspect ratio
pinch on the region, i.e. the horizontal and vertical scaling of
the hull individually depend on the movement of the fingers
in the x and y direction respectively.

Figure 3: Clutch + drag on the axis creates a new rectangular
selection that intersects with existing selections. Notice the
color difference in selected and non-selected portions. Here,
the right hand is performing the Clutch action.

Figure 4: Clutch + drag inside a rectangular selection creates
a duplicate.

2. Clutch + pinch for selection rectangles – For rectangular
selections, the movement of each finger in the pinch gesture
is mapped to the ends of the active rectangle. As the fingers
move, the size of the active rectangle changes accordingly.

Clutch + Drag + Pinch
The Clutch + drag + pinch gesture is a special configuration
of the Clutch + drag gesture, where the user begins by drag-
ging a finger and, without lifting that finger, performs a pinch
gesture using another finger. We currently utilize this ges-
ture to further augment the Clutch + drag operation on sin-
gle glyph selections. There, we utilized the gesture to scrub
through the neighboring glyphs. In configurations when the
glyphs are located in a densely packed region, executing the
pinch-out gesture reveals a lens at that location with the re-
gion zoomed in (Figure 6). The user can now lift her second
finger and continue dragging with the first finger. This cy-
cles through the glyphs in the scaled up view in the lens. If
the target glyph is situated outside the region in the lens, the
lens appropriately shifts to the new location. Once the task is
complete, the user can close the lens by either pinching-in or
lifting all the fingers.

Figure 5: Clutch + pinch for multiple glyphs grows or shrinks
the selection area.

Figure 6: Clutch + drag + pinch for single selections reveals
a lens with zoomed in region.

Low-Tension Clutch
The Clutch-modified gestures presented above can be de-
scribed as phrases. Buxton [8] defines phrases as chunks
of subtasks “glued together” into a routine that can be per-
formed in a single continuous action. The physical tension
that “chunks” or ties together the actions of a phrase is called
phrase tension [18]. For the above gestures, the Clutch action
behaves as the phrase tension.

Hinckley et al. [18] define three categories of phrase
tension—full-, half-, and low-tension. These differ based on
the duration for which the user keeps the physical tension ac-
tive. In the current implementation of the Clutch-modified
gestures, keeping the Clutch active for the entire duration
is unnecessary since the Clutch info is only utilized at the
start of the gestures. We thus configured the Clutch as a low-
tension modifier—for all Clutch-modified gestures, users can
lift the Clutch immediately after they begin the gesture with
their primary hand (as demonstrated in Figure 6).

A low-tension Clutch helps in reducing discomfort that may
occur in manipulating the screen with both hands simulta-
neously, while also supporting the tablet with one hand. It
also further differentiates the behavior of the Clutch modifier

from a desktop modifier. On desktops, when selecting text
using Shift and arrow keys, the user cannot release the Shift
key until the selection is complete, even though the arrow key
is continuously pressed.

GENERALIZED SELECTION INTERACTION DESIGN

Conceptual Foundation
Selections can broadly be classified into two categories:
view-driven and data-centric. View-driven selections are the
“standard” selections where targets are identified based on the
visual properties of the glyphs, such as position or size. Con-
versely, in data-centric selections, targets are identified based
on a value or range of values of an attribute in the data. For
example, data items with a specific value for a categorical at-
tribute can be selected by mapping the attribute to a visual
property such as color or shape, and using the legend.

Generalized selection is an advanced selection operation
that combines these view-driven and data-centric selections.
Here, the user identifies a target using a visual property, e.g.
position or color, and subsequently intends to select other
items that are similar to this item based on certain attributes
of the data. For example, in a scatterplot of movies with rat-
ing and profit on x and y-axis, the user highlights the movie
that is furthest towards the top right and wants to view other
movies by the same director. This selection differs from the
data-centric selection since the user may not be interested in
knowing who the director is, but is only interested in the rat-
ings and profit of the other movies made by him/her.

Heer et al. [16] described generalized selection as a “select
objects like this” query, and presented a method to perform
it in scatterplots on desktops. In their system, users invoke a
context menu on a selected glyph and pick an attribute from
a list. This selects all other glyphs in the view with the same
value for the attribute as the originally selected glyph. If the
attribute contains hierarchical information, selection can be
cycled through different levels of the hierarchy by repeatedly
clicking on the originally selected glyph. For example, if the
attribute is a date, repeated clicks expand the selection to in-
clude items from the same day, same week, same month, and
then the same year.

Generalizing a selection in the absence of a specialized
method is fairly cumbersome, however. For instance, to per-
form the selection in the above example without a context
menu, one needs the following steps: identify the director of
the movie, switch the axis attribute to directors, lasso-select
all movies by the specific director, and finally switch back to
the original axis attributes to view the spread of the selected
movies. An alternate method would be to add a second view,
such as a barchart with directors on the x-axis, and use brush-
ing between the views. Selecting the movie in the scatterplot
would highlight the bar representing the director in the bar-
chart. Subsequently, selecting this bar would select all con-
nected movies in the scatterplot.

All these alternatives involve multiple steps, each of which al-
ters users’ context by changing the views. Since such context
switches are undesirable, we created a specialized method to
perform generalized selection in a tablet visualization system.

We designed a novel interaction technique that provides fluid
access to attributes of data. Our implementation expands the
operations originally presented in [16] by applying it to addi-
tional attribute types and adding methods for users to control
the parameters of the selection.

Selection Variations — The outcome of generalizing a se-
lection varies based on the size of the existing selection and
the attribute used for generalizing it.

1. Single object selections: For a single selected glyph, out-
come varies with the type of attribute as follows:

(a) Categorical: For categorical attributes, the selection
expands to include all data items that have the same
value for the attribute as the selected glyph. (e.g.,
genre = ‘Action’)

(b) Hierarchy: For attributes with hierarchical properties,
selection expands to include the data items that match
the value of the selected glyph at the lowest level of
the hierarchy. For example, for the date attribute, we
begin by matching the exact date of the data items
(i.e., date = ‘07/13/2016’).

(c) Quantitative: For quantitative attributes, the selection
expands include to data items that fall within a neigh-
borhood around the value of the selected glyph. (e.g.,
profit ∈ [90, 110]).

2. Multiple object selections: Generalizing selections for
multiple selected glyphs behaves similar to the single se-
lected glyph, but expands the matching criteria to include
values of the attribute from all the selected glyphs. For cat-
egorical attributes and hierarchical attributes, the union of
all the values is used for selection, while for quantitative
values, a range going from the minimum and maximum
value of the attribute is used.

Interaction Design
The key component for the generalized selection operation is
a list of attributes from which the user picks one. The neces-
sity of displaying this list differentiates the operation from the
other advanced selection operations we presented earlier.

Our interaction design consists of a widget that appears in the
periphery of the selected data glyph(s). The widget is hidden
by default, and can be introduced on demand. To circumvent
the need for a persistent UI element to initialize the operation,
we utilize a unique gesture — a two-finger tap. If one or
more glyphs are selected, performing a two-finger tap gesture
anywhere on the view presents the widget.

The widget consists of a single label that, initially, gives a
description of the operation (Figure 7a). In the background,
the widget contains a vertically scrollable list of options that
remain hidden from the user. The widget operates in a manner
emulating trackpad input with the entire screen behaving as
a touchpad. The user can place her finger anywhere on the
screen and drag vertically up or down to scroll through the
options (Figure 7b). As an option becomes visible, the glyphs
in the chart update to reflect the selection that is generalized
with respect to the attribute the option represents.

To enable users to explore all available options, the wid-
get maintains two separate selections. The primary selec-
tion maps to the originally selected glyphs and remains static
throughout the operation. The secondary selection represents
glyphs selected through generalization, and updates each time
the user scrolls to a different option. By separating the selec-
tions, the user is able to explore the options over multiple drag
gestures and finger lifts, and is not required to complete the
entire selection in a single continuous stroke. To commit a
selection, the user can tap outside the list. This merges the
secondary selection into the primary selection. Alternatively,
to cancel the operation and return to the original state, the user
can either scroll the list to the top or perform a two-finger tap
gesture to dismiss the widget.

The second step in generalizing a selection is controlling the
parameters of the chosen attribute. As we discussed earlier,
the parameters are dependent on the type of the attribute. Our
design displays the options for modifying the parameters in a
separate control that appears below the original widget (Fig-
ure 7c). This additional control only appears when the user
halts on a particular option for more than 500 ms (i.e., scrolls
to an option and lifts her finger).

For attributes with hierarchical properties, the secondary con-
trol presents the level of hierarchy being used for expanding
the selection. Initially, this is the lowest level for that attribute
(e.g. date). The other levels appear as columns of a horizon-
tally scrollable list view contained within the control (Figure
7c). Users can switch to any other level by swiping left or
right. Similar to vertical swiping in the attribute list, this hor-
izontal swiping can be performed anywhere on the view.

Finally, for quantitative attributes, the secondary control con-
tains a slider widget that depicts the range of values used for
generalizing the selection (Figure 7d). When the initial selec-
tion is a single glyph, we use a 10 percent threshold around
the value of the attribute. For multiple glyphs, the range ex-
tends from the minimum to the maximum value of the at-
tribute for the selected glyphs. The slider widget extends
from the minimum to the maximum across the entire dataset,
with the selected range highlighted using handles. Since ma-
nipulating the small handles directly is difficult, their position
can be controlled with a two-finger pinch operation (Figure
7d). The gesture can be performed anywhere on the screen.
Dragging a finger causes the corresponding handle to move
by an equivalent amount. Finally, we also embellish the wid-
get with the distribution of the values for the attribute using
the scented-widgets technique [30].

DISCUSSION
The Clutch technique we introduce in this paper extends the
selection capabilities and features of touch-based visualiza-
tion systems. However, the technique can also be applied to
operations other than selection. In this section, we discuss a
few extensions of the technique and reflect on the drawbacks
and limitations of the current design.

Potential Extensions
We envision the Clutch gestures being applied for other oper-
ations such as layout-modification. For instance, in a system

Figure 7: Generalized selection. a) User taps on the screen
with two fingers to activate the generalized selection menu.
b) To scroll through the list of attributes, user drags a finger
vertically. c) For hierarchical attributes, user drags horizon-
tally to access other levels of hierarchy. d) For quantitative at-
tributes, the scented widget displays the selected and overall
range of selection. Using a two finger pinch, user can modify
the extents of the selection.

with multiple stacked views (e.g., [27]), Clutch + drag could
be used for reordering or removing views from the screen.
Clutch + pinch could be used for ad hoc scaling of certain
views, in case the user wants more space for precise actions,
or if views contain only a few glyphs. Finally, one could
utilize Clutch + tap or double-tap to disconnect a view from
other views. This would permit localized filtering of data for
situations when users wish to compare views filtered differ-
ently. Alternatively, Clutch + tap also could be used for book-
marking the state of a view that users can revert to later.

While the Clutch gesture has applicability to a broad set of
operations, the Clutch action itself is only one of many pos-
sible modifier techniques. With a modifier, one ultimately
wants to supply a single unit of information to the system
before performing a gesture. A non-preferred hand modi-
fier has the benefit that it conforms with the division of labor
model—the role of the non-dominant hand is that of fram-
ing the detailed action that the dominant hand performs. It
also prevents the need for the preferred hand to perform a
complex gesture. However, other properties of touch can be
leveraged that permit the modifier to also be supplied by the
preferred hand without adding difficulty. One potential option
is to use pressure. Recently, 3D Touch [1] was introduced
on Apple iPhones that adds pressure sensitivity to the screen.
A modifier on this screen could be force-pressing the screen
once before performing the gesture normally. Alternatively,
a touch could be treated as a modifier if it is performed us-
ing the knuckle or nail of the finger [15]. In fact, many touch
overloading techniques we presented earlier are suitable for
use as modifier actions.

Drawbacks and Limitations
Although the Clutch modifier technique holds promise for
touch-based visualization systems, it exhibits a number of po-
tential limitations as well. First, the Clutch action is poten-
tially disruptive and likely requires users to switch their grip.
This can be particularly cumbersome if the user is mobile
rather than stationary. Another limitation is the ergonomics of
performing Clutch. It may be difficult to maintain the Clutch
action for a continuous period of time. Although the low-
tension mode we discussed earlier addresses this limitation
to an extent, repeated Clutch actions over a short time period
can still strain the hands and affect performance over time.

Perhaps the biggest limitation of the technique is discover-
ability and affordance. Discoverability is an issue both for the
Clutch action itself and the mapping to the advanced selection
operations. Since the Clutch action is not self revealing, users
are less likely to discover or “guess” it on their own without
guidance. Providing an affordance for the action is, thus, crit-
ical, although it is difficult to ascertain what the affordance
should be. Further, if users discover the clutch action on their
own, they still need some guidance for mapping the action
to the advanced selection operations. The activation region of
the Clutch action overlaps with the location of a few other op-
erations, such as drag on axes and swipe-in from edges. This
likely increases the probability of accidental Clutch activa-
tions. Nonetheless we believe that self-revelation affordances
need to be integrated with the Clutch technique in the future.

Finally, user studies of the Clutch techniques compared
to other approaches such as marking menus or alternative
touch gestures are clearly needed to better understand each’s
strengths and weaknesses. The design-oriented research in
this article has focused on introducing the idea of using
Clutch gestures for advanced selections operations. Earlier,
we presented the reasons that make us believe that the quasi-
mode approach can succeed, but only user testing and actual
trial usage will discover how people perceive and react to the
different methods.

CONCLUSION
In this paper, we explore novel interactions for performing ad-
vanced selections on tablet-based visualization systems. We
present the Clutch modifier technique and employ it for ad-
vanced selection tasks. The benefit of this approach is that
it extends the vocabulary by augmenting existing gestures in
place of introducing new and complex interactions. We also
describe the design of interactions to provide generalized se-
lection, and we extend the technique to include operations for
parameterized control of the selections.

Much further work remains. For example, the generalized
selection technique can be extended beyond selections made
within charts, and into other components, such as the cells,
rows or columns of the data table, or the filter badges that
represent the active “keep only’ or “exclude” filters. Oppor-
tunities also exist for providing compound generalized selec-
tions, such as generalization on multiple attributes (e.g., se-
lect all movies by same director OR same genre AND same
release year). Similarly, the interaction techniques we intro-
duce could be used for providing different types of opera-
tions, such as layout-modifications.

The potential to extend the interactions and feature-space of
touch-based visualization tools is immense. The use of a
Clutch operation augments everyday gestures that are famil-
iar to people, and thus extends a command set (e.g., advanced
selection) while helping to keep the interactions approachable
and accessible. We hope that such design contributions can
help spur further advances in touch-based visualizations, with
the aim of achieving parity with desktops in the efficiency of
data analysis.

ACKNOWLEDGEMENTS
This work was supported by a Google Faculty Research
Award and by the National Science Foundation via award IIS-
1320537.

REFERENCES
1. 3d Touch - iOS - Apple Developer.

https://apple.com/ios/3d-touch/.

2. Vizable by Tableau. https://vizable.tableau.com/.

3. Au, O. K.-C., Su, X., and Lau, R. W. LinearDragger: A
Linear Selector for One-finger Target Acquisition. In
Proc. of ACM CHI ’14 (2014), 2607–2616.

4. Baur, D., Lee, B., and Carpendale, S. TouchWave:
Kinetic Multi-touch Manipulation for Hierarchical
Stacked Graphs. In Proc. of ITS ’12 (2012), 255–264.

5. Bederson, B. B., and Hollan, J. D. Pad++: A Zoomable
Graphical Interface System. In ACM CHI Conference
Companion (1995), 23–24.

6. Benko, H., Wilson, A. D., and Baudisch, P. Precise
Selection Techniques for Multi-touch Screens. In Proc.
of ACM CHI ’06 (2006), 1263–1272.

7. Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and
DeRose, T. D. Toolglass and Magic Lenses: The
See-through Interface. In Proc. of ACM SIGGRAPH ’93
(1993), 73–80.

8. Buxton, W. A. S. Chunking and phrasing and the design
of human-computer dialogues. In Human-computer
Interaction, R. M. Baecker, J. Grudin, W. A. S. Buxton,
and S. Greenberg, Eds. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1995, 494–499.

9. Casiez, G., Vogel, D., Pan, Q., and Chaillou, C.
Rubberedge: Reducing Clutching by Combining
Position and Rate Control with Elastic Feedback. In
Proc. of ACM UIST ’07 (2007), 129–138.

10. Chen, H. Compound brushing [dynamic data
visualization]. In Information Visualization, 2003.
INFOVIS 2003. IEEE Symposium on, IEEE (2003),
181–188.

11. Grossman, T., and Balakrishnan, R. The Bubble Cursor:
Enhancing Target Acquisition by Dynamic Resizing of
the Cursor’s Activation Area. In Proc. of ACM CHI ’05
(2005), 281–290.

12. Guiard, Y. Asymmetric division of labor in human
skilled bimanual action. Journal of Motor Behavior 19,
4 (1987), 486–517.

13. Hackett, M., and Cox, P. T. Touchscreen Interfaces for
Visual Languages. Tech. Rep. CS-2011-05, Dalhousie
University, July 2011.

14. Harrison, C., and Hudson, S. Using Shear As a
Supplemental Two-dimensional Input Channel for Rich
Touchscreen Interaction. In Proc. of ACM CHI ’12
(2012), 3149–3152.

15. Harrison, C., Schwarz, J., and Hudson, S. E. TapSense:
Enhancing Finger Interaction on Touch Surfaces. In
Proc. of ACM UIST ’11 (2011), 627–636.

16. Heer, J., Agrawala, M., and Willett, W. Generalized
Selection via Interactive Query Relaxation. In Proc. of
ACM CHI ’08 (2008), 959–968.

17. Heo, S., and Lee, G. Force Gestures: Augmenting Touch
Screen Gestures with Normal and Tangential Forces. In
Proc. of ACM UIST ’11 (2011), 621–626.

18. Hinckley, K., Baudisch, P., Ramos, G., and
Guimbretiere, F. Design and Analysis of Delimiters for
Selection-action Pen Gesture Phrases in Scriboli. In
Proc. of ACM CHI ’05 (2005), 451–460.

19. Holz, C., and Baudisch, P. Understanding Touch. In
Proc. of ACM CHI ’11 (2011), 2501–2510.

20. Lepinski, G. J., Grossman, T., and Fitzmaurice, G. The
Design and Evaluation of Multitouch Marking Menus.
In Proc. of ACM CHI ’10 (2010), 2233–2242.

21. Luo, Y., and Vogel, D. Pin-and-Cross: A Unimanual
Multitouch Technique Combining Static Touches with
Crossing Selection. In Proc. of ACM UIST ’15 (2015),
323–332.

22. Moscovich, T. Contact Area Interaction with Sliding
Widgets. In Proc. of ACM UIST ’09 (2009), 13–22.

23. North, C., Dwyer, T., Lee, B., Fisher, D., Isenberg, P.,
Robertson, G., and Inkpen, K. Understanding
multi-touch manipulation for surface computing. In
Proc. of INTERACT ’09, Springer-Verlag (2009),
236–249.

24. Potter, R. L., Weldon, L. J., and Shneiderman, B.
Improving the Accuracy of Touch Screens: An
Experimental Evaluation of Three Strategies. In Proc. of
ACM CHI ’88 (1988), 27–32. 00328.

25. Raskin, J. The Humane Interface: New Directions for
Designing Interactive Systems. ACM
Press/Addison-Wesley Publishing Co., 2000.

26. Rzeszotarski, J. M., and Kittur, A. Kinetica: Naturalistic
Multi-touch Data Visualization. In Proc. of ACM CHI
’14 (2014), 897–906.

27. Sadana, R., and Stasko, J. Designing Multiple
Coordinated Visualizations for Tablets. In Computer
Graphics Forum, vol. 35 (2016), 261–270.

28. Sellen, A. J., Kurtenbach, G. P., and Buxton, W. A. S.
The Prevention of Mode Errors Through Sensory
Feedback. Hum.-Comput. Interact. 7, 2 (June 1992),
141–164.

29. Wagner, J., Huot, S., and Mackay, W. BiTouch and
BiPad: Designing Bimanual Interaction for Hand-held
Tablets. In Proc. of ACM CHI ’12 (2012), 2317–2326.

30. Willett, W., Heer, J., and Agrawala, M. Scented
Widgets: Improving Navigation Cues with Embedded
Visualizations. IEEE TVCG 13, 6 (Nov. 2007),
1129–1136.

31. Willett, W., Lan, Q., and Isenberg, P. Eliciting
Multi-touch Selection Gestures for Interactive Data
Graphics. In EuroVis Short-Paper Proceedings (2014).

32. Wills, G. J. Selection: 524,288 ways to say “this is
interesting”. In Proc. of IEEE InfoVis ’96 (1996), 54–60.

33. Wilson, A. D., Izadi, S., Hilliges, O., Garcia-Mendoza,
A., and Kirk, D. Bringing Physics to the Surface. In
Proc. of UIST ’08, UIST ’08 (2008), 67–76.

34. Wobbrock, J. O., Morris, M. R., and Wilson, A. D.
User-defined Gestures for Surface Computing. In Proc
of ACM SIGCHI ’09 (2009), 1083–1092.

35. Wu, M., Shen, C., Ryall, K., Forlines, C., and
Balakrishnan, R. Gesture registration, relaxation, and
reuse for multi-point direct-touch surfaces. In Proc. of
IEEE TABLETOP ’06 (2006), 185–192.

36. Yi, J. S., Kang, Y., and Stasko, J. Toward a Deeper
Understanding of the Role of Interaction in Information
Visualization. IEEE TVCG 13, 6 (Nov. 2007),
1224–1231.

	Introduction
	Background
	Advanced Selection on Multitouch Devices
	Advanced Selection in Information Visualization

	Advanced Selection for Tablet Visualizations
	Modes for Advanced Selection
	View-driven Selections
	Challenges of Touch Input

	Interaction Techniques for Advanced Selection
	Multitouch Menus
	Touch Overloading
	Quasimodes

	Advanced Selection Interaction Design
	The Clutch Modifier Technique
	Mapping Clutch to Selection Modes
	Clutch + Tap
	Clutch + Drag
	Clutch + Pinch
	Clutch + Drag + Pinch

	Low-Tension Clutch

	Generalized Selection Interaction Design
	Conceptual Foundation
	Interaction Design

	Discussion
	Potential Extensions
	Drawbacks and Limitations

	Conclusion
	Acknowledgements
	REFERENCES

